Hareketin karışımı
1- Hareketli cisim tarafından katedilen, sonsuzca bölünebilir sayısal bir çokluk oluşturan, gerçek yada olanaklı bütün parçaları edimsel olan ve yalnızca derece bakımından farklılaşan uzay,
2- Diğer yandan ise "Başkalaşma" olan niteliksel virtuel çokluk olan saf hareket, tıpkı adımlarla bölünen ama her bölündüğünde doğasını da değiştiren Akhilleus'un koşusu gibi.
Her yerdeğiştirmenin ardında başka bir doğaya sahip bir değişim (Transport) olduğunu keşfeder.
örn: Dışardan bakıldığında koşu sayısal bir kısım gibi görünen şey içeriden yaşandığında aşılmış bir engeldir. syf 80
Achilles in Greek philosophy
The philosopher Zeno of Elea centered one of his paradoxes on an imaginary footrace between "swift-footed" Achilles and a tortoise, in which he proved that Achilles could not catch up to a tortoise with a head start, and therefore that motion and change were impossible. As a student of the monist Parmenides and a member of the Eleatic school, Zeno believed time and motion to be illusions.
Paradoxes of motion
[edit] Achilles and the tortoise
You can never catch up.
“ In a race, the quickest runner can never overtake the slowest, since the pursuer must first reach the point whence the pursued started, so that the slower must always hold a lead. ”
—Aristotle, Physics VI:9, 239b15
In the paradox of Achilles and the Tortoise, we imagine the Greek hero Achilles in a footrace with the plodding reptile. Because he is such a fast runner, Achilles graciously allows the tortoise a head start of a hundred feet. If we suppose that each racer starts running at some constant speed (one very fast and one very slow), then after some finite time, Achilles will have run a hundred feet, bringing him to the tortoise's starting point; during this time, the tortoise has "run" a (much shorter) distance, say one foot. It will then take Achilles some further period of time to run that distance, in which said period the tortoise will advance farther; and then another period of time to reach this third point, while the tortoise moves ahead. Thus, whenever Achilles reaches somewhere the tortoise has been, he still has farther to go. Therefore, Zeno says, swift Achilles can never overtake the tortoise. While common sense and common experience would hold that one runner can catch another, according to the above argument, he cannot; thus the paradox.
[edit] The dichotomy paradox
You cannot even start.
“ That which is in locomotion must arrive at the half-way stage before it arrives at the goal. ”
—Aristotle, Physics VI:9, 239b10
http://en.wikipedia.org/wiki/Zeno%27s_paradoxes#Achilles_and_the_tortoise
Hiç yorum yok:
Yorum Gönder